Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics.

نویسندگان

  • Tod D Romo
  • Alan Grossfield
  • Michael C Pitman
چکیده

The recently solved crystallographic structures for the A(2A) adenosine receptor and the beta(1) and beta(2) adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 mus all-atom simulation of an apo-beta(2) adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for approximately 200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.

Fully understanding the mechanisms of signaling proteins such as G protein-coupled receptors (GPCRs) will require the characterization of their conformational states and the pathways connecting those states. The recent crystal structures of the beta(2)- and beta(1)-adrenergic receptors in a nominally inactive state constituted a major advance toward this goal, but also raised new questions. Alt...

متن کامل

A conserved protonation-induced switch can trigger "ionic-lock" formation in adrenergic receptors.

The mechanism of signal transduction in G-protein-coupled receptors (GPCRs) is a crucial step in cell signaling. However, the molecular details of this process are still largely undetermined. Carrying out submicrosecond molecular dynamics simulations of beta-adrenergic receptors, we found that cooperation between a number of highly conserved residues is crucial to alter the equilibrium between ...

متن کامل

Molecular simulation of multistate peptide dynamics: A comparison between microsecond timescale sampling and multiple shorter trajectories

Molecular dynamics simulations of the RN24 peptide, which includes a diverse set of structurally heterogeneous states, are carried out in explicit solvent. Two approaches are employed and compared directly under identical simulation conditions. Specifically, we examine sampling by two individual long trajectories (microsecond timescale) and many shorter (MS) uncoupled trajectories. Statistical ...

متن کامل

Microsecond Molecular Dynamics Simulations Provide Insight into the Allosteric Mechanism of the Gs Protein Uncoupling from the β2 Adrenergic Receptor.

Experiments have revealed that in the β(2) adrenergic receptor (β(2)AR)-Gs protein complex the α subunit (Gαs) of the Gs protein can adopt either an "open" conformation or a "closed" conformation. In the "open" conformation the Gs protein prefers to bind to the β(2)AR, while in the "closed" conformation an uncoupling of the Gs protein from the β(2)AR occurs. However, the mechanism that leads to...

متن کامل

The Molecular Mechanism of P2Y1 Receptor Activation

Human purinergic G protein-coupled receptor P2Y1 (P2Y1 R) is activated by adenosine 5'-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1 R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 98 1  شماره 

صفحات  -

تاریخ انتشار 2010